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Implement a sustained and affordable human and
robotic program to explore the solar system and beyond,;

Extend human presence across the solar system,
starting with a return to the Moon by the year 2020, in
preparation of the exploration of Mars and other
destination;

Develop the innovative technologies, knowledge, and
infrastructures, both to explore and to support decisions
about the destinations for human exploration;

Promote international and commercial participation in
exploration to further U.S. scientific, security, and
economic interests.



Identify Key Robotic Human Missions
Targets Trailblazers to the Moon
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* Mission:
— Long range traverses (< 6km)
— Collect samples
— Analyze samples on-board

900 kg rover baseline
112 kg instruments & support
Two arms




Need to develop three systems for each mission:
— Flight software

— Ground software

— Simulation software

Flight software

— Rovers will require more adaptable software to do
long traverses for example

Ground software
— Need planning software for planning operations

— Need autonomous execution for uploading and
executing commands on ISS or on-orbit

V&V of a different type of software systems



Interface to users/operations
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Interface to users/operations

* Graph manipulation errors:
static analysis, symbolic
execution and advanced testing
* Meta-rule errors: model
checking, static analysis
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* Run time errors: static analysis

» Safety properties: model

checking and compositional

verification

 Other properties of interest:
*Real-time
*Convergence/divergence

PLEXIL
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« Ambuigity, inconsistency,
completeness: symbolic
model checking
 Functional reqgs: symbolic
model checking

Controlled Hardware




Interface to users/operations
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Autonomy for Operations
— Pls: Jeremy Frank & Ari Jonsson
— PM: Robert Brummett

Project goal:
— Develop and mature needed automation software

— capabilities for Constellation mission operations, onboard
— control, crew assistance and robotics.

Core capabilities
— Human in-the-loop automation
— Monitored execution
— Decision support
— Operation requirement studies
— Simulation and testbeds
— Application and prototypes
— Verification




* Mission Operations
» Operating procedure generation
» Space flight operations planning
* Remote system operations (nominal and off-nominal)
« Support of crew control (nominal and off-nominal)
- Crewed Spacecraft Operations
« Spacecraft systems operations (nominal and off-nominal)
- Robotic Operations
» Explorers and scouts on the lunar surface
 Assistants and tools for human explorers
- Lunar Infrastructure Operations
 Control of habitats, communications and power equipment, etc.
- Unmanned Spacecraft Operations
* Remote system operations (nominal and off-nominal)




* Mission Operations

 State of art : Many tools, lack of interoperability

* Need: mission operations paradigm
- Crewed Spacecraft Operations

 State of art : Crew relies on ground to support and control operations

* Need: Crews able to operate systems and own tasks

- Robotics Operations
 State of art: Requires multiple operators for command and monitoring
* Need: robot operations
- Lunar Surface Operations
 State of art : Ground-based operation of most surface assets
* Need: robot operations
- Unmanned Spacecraft Operations

« State of art: Requires direct human command and monitoring
* Need: operations



- Key elements of technology
» Re-usable, interoperable and adaptable architecture
* Data-driven general and re-usable modules
« Common data specifications support adaptability, evolvability and
interoperability of tools based on standards developed by CSI
» Automation capabilities
* Monitoring and analysis of telemetry and system states

. : From help for users to on-board decision-making
. : Carry out decisions and plans, from humans and automation

 Human interaction support
* Adjustable automation allows humans to handle more or less as needed
 Assistance provides summary of information, options, evaluations,
warnings
« Complementary capabilities based on computational power

- Flexible and reusable - on ground and on board
» Enable transition from initial manual flights to sustainable operations
« Same core capabilities used on ground, in flight and on lunar surface



-« Executive

* Lightweight engine for executing PLEXIL plans Inteiaces
« Small memory and processor footprint
» General and reusable PLEXIL
« Same engine for many applications
v

» Compiles on VxWorks, Linux, Solaris, OSX
» Simple, well defined interface to low level
control

« Commanding interface
» Sensing interface

* Provides tools for users

Universal Executive

Interface to systems

» Applications
* Drives procedure execution automation
» Executes plans for on-board operations C
* Runs K10 rover activity plans on board —




* Procedures

* Notion generalizes a number of existing concepts:
Command sequences, plans, checklists, diagnosis procedures, etc.

* Procedures for both humans and automation

. : Human-understandable; e.g., operations procedures
. : Machine-understandable; e.g., plans and command sequences
* Need a combination to enable adjustable automation

* Procedure Representation Language (PRL)

* Combines ISS procedure schema with PLEXIL schema
« XML-based language

 Elements of PRL

* Meta data provides names, context, version, etc. for procedure
» Control data provides logical control and safety conditions

» Steps and nodes structure procedure for human readability

* Instructions specify instructions, commands, etc.



* Main focus: how to validate procedures?

* We have five major efforts under way

— Definition of formal semantics of PLEXIL
language

— Model-based generation of test plans for
PLEXIL

— Model checking of PLEXIL procedures
— Simulation of PRL procedures
— Model checking of PRL procedures




- PLEXIL

- Plan Execution Interchange Language
 For describing plans, sequences, procedures, scripts, etc.
« Simple syntax that is very powerful
» Timed command sequences, event driven sequences, monitors
« Concurrent execution, repeating sequences, etc.
» Contingencies, conditionals, etc.

» Guarantees unambiguous execution
* Provides guarantees against deadlocks
» Simple syntax facilitates validation and checking

- General and reusable
- PLEXIL is logical automation core of PRL

« Control logic and safety conditions in PRL map to PLEXIL
» Execution semantics and properties of PLEXIL extend to PRL



« We investigate two ways of applying model checking to
procedures

« Compositional model checking using LTSA:

— Build Labelled Transition System Analyser (LTSA) models for
« underlying physical system (e.g., using FSM models for simulation)
» procedures

— Define safety properties of interest for the procedures

— Model check the LTSA models using compositional techniques
to alleviate the state explosion problems

« SMART model checking:
— Build SMART models of PLEXIL macros
— Check for deadlock and behavioral correctness properties

— Investigate scalability of the approach by defining appropriate
abstractions



 The definition of formal semantics of PLEXIL

language is necessary for the development of
formal verification tools

* Our approach:

— Described behavioral formal semantics of PLEXIL in
LTSA models

» Detection of subtle execution errors in PLEXIL models
» Automatic translation of PLEXIL procedures into LTSA models

— Described formal semantics of PLEXIL in PVS

* Prove determinism and behavioral determinism for the PLEXIL
language



* Behavioral model for the state waiting of a
PLEXIL node
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Component A

D
D

D
D

Component B

« Design-level: decompose (architecture)

— establish contracts (assume-guarantee pairs) between
components to guarantee key system-level properties

« Code-level: verify and test
— verify or test each component against its individual contracts

* Reconfiguration
— verify new components against contracts of substituted ones

Component C

Reconfiguration



« Decompose properties of system (M, || M,) in
properties of its components

* Does M, satisfy P?

Ml — typically a component is designed to satisfy its
requirements in specific contexts / environments

« Assume-guarantee reasoning: introduces

assumption A representing M,’s “context”
« Simplest assume-guarantee rule

1. A M (P
2. (truey M, (A

(true)y My || M, (P)




Test Plan

PLEXIL
Test plans
I (XML Files)

PLEXIL

Grammar
(XML

Schema)

Java
representati
on

. )

Castor Test Plan
Tool Generator
(Java PathFinder
Model checking
tanl)

* The goal is to automatically generate
procedures for testing PLEXIL based on the
PLEXIL grammar
— The Castor-based translation is done

— The test plan generation is inherited from previous
research



Original procedure Encoding in PRL
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* Authoring
* Graphical and Textual Editing
» Syntax checking and Syntax constraints
 Viewing
* Static and Dynamic views on procedures
* Procedure Checking
* Check procedures against flight rules
» Check procedures against constraints
* Assist in evaluation of simulation results
» General interface supports plug and play of
validation components
« Configuration and workflow management
* Support workflow, including repositories,
signoffs, etc.
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 Build finite state machine (FSM) models
describing the underlying physical system (at
least, its interface to the operator world)

« Simulate the execution of the procedure in
conjunction with the FSMs

* |dentify missing pre-conditions for nominal
state execution
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 Validation of planning models by
translating them into model checking
models

 Validation of plans and plan robustness

« Automatic generation of test cases to test
against flight rules



« The goal is to study validation of planning models by
translating them into SAL model checking models

* Approach:

— Definition of a simple planning language, called APPL (A Plan
Preparation Language), based on NDDL that is more amenable

to formal verification
— Automatic translation from APPL models to NDDL models

— Automatic translation from APPL models to SAL models

« We also study the relationship between APPL and the language
unifying NDDL and Casper

— Investigation issues of representation in SAL so that scalability

problem can be avoided
« For example, the representation of time and timers



The goal is to automatically generate test cases

for planners so that we can test against flight
rules

Process:

— Modeling flight rules in appropriate language

» We started with LTL (linear temporal logic), but are
considering others

— Generate coverage conditions that cover flight rules
accordlng to “ unlque cause” criterion

“Unique cause” is an extension of the commonly used
MC/DC coverage criterion mandated by the FAA

— Generate test case in the form of Europa goals (or
partial plans) using the coverage conditions
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